
A Pragmatist Robot: Learning to Plan Tasks by

Experiencing the Real World
Kaixian Qu, Guowei Lan, René Zurbrügg, Changan Chen,

Christopher E. Mower, Haitham Bou-Ammar, and Marco Hutter

Abstract—Large language models (LLMs) have emerged as
the dominant paradigm for robotic task planning using natural
language instructions. However, trained on general internet data,
LLMs are not inherently aligned with the embodiment, skill
sets, and limitations of real-world robotic systems. Inspired by
the emerging paradigm of verbal reinforcement learning—where
LLM agents improve through self-reflection and few-shot learn-
ing without parameter updates—we introduce PRAGMABOT, a
framework that enables robots to learn task planning through
real-world experience. PRAGMABOT employs a vision-language
model (VLM) as the robot’s “brain” and “eye”, allowing it to
visually evaluate action outcomes and self-reflect on failures.
These reflections are stored in a short-term memory (STM),
enabling the robot to quickly adapt its behavior during ongoing
tasks. Upon task completion, the robot summarizes the lessons
learned into its long-term memory (LTM). When facing new
tasks, it can leverage retrieval-augmented generation (RAG) to
plan more grounded action sequences by drawing on relevant
past experiences and knowledge. Experiments on four challenging
robotic tasks show that STM-based self-reflection increases task
success rates from 35% to 84%, with emergent intelligent object
interactions. In 12 real-world scenarios (including eight previ-
ously unseen tasks), the robot effectively learns from the LTM
and improves single-trial success rates from 22% to 80%, with
RAG outperforming naive prompting. These results highlight
the effectiveness and generalizability of PRAGMABOT. Project
webpage: https://pragmabot.github.io/

Index Terms—Learning from experience, task planning, AI-
enabled robotics, embodied AI.

I. INTRODUCTION

RECENTLY, large language models (LLMs) have demon-
strated near-human performance across a range of rea-

soning tasks, showcasing emergent capabilities in diverse
domains such as coding and law [1], [2], [3], [4]. These broad
competencies have enabled LLMs to move beyond traditional
language tasks and sparked interest in the field of robotics. In
particular, they are now widely used in task planning, where
LLMs interpret natural language instructions and generate
feasible action plans with common-sense reasoning [5], [6],
[7], [8], [9]. However, applying LLMs to robotics remains

K. Qu, G. Lan, R. Zurbrügg, C. Chen, and M. Hutter are with the Robotic
Systems Lab, ETH Zürich, Switzerland. R. Zurbrügg is also with the ETH
AI Center, ETH Zürich, Switzerland. C. E. Mower and H. Bou-Ammar are
with Huawei Noah’s Ark Lab, London, UK. H. Bou-Ammar is also with
the UCL Centre for AI, London, UK. Corresponding author: K. Qu (e-mail:
kaixqu@ethz.ch).

This research was supported by the Swiss National Science Foundation
through the National Centre of Competence in Digital Fabrication (NCCR
dfab), by Huawei Tech R&D (UK) through a research funding agreement, by
an ETH RobotX research grant funded through the ETH Zürich Foundation,
and partially by the ETH AI Center. This work was also conducted as part of
ANYmal Research, a community to advance legged robotics. We would also
like to thank Cesar Cadena for his support and helpful discussions.

Pick up tennis ball.

Tennis ball is obstructed by fan.
Experience taught me …

I’ll pick up apple.

Pick up apple.

I can't pick up apple directly,
it’s blocked by the can. I
need to push away the can
first, then pick up the apple. So, I should

1. push away the fan,
2. pick up the tennis ball.

Fig. 1: Robot completes a new task guided by a long-term
memory of self-reflective experiences. When executing a
novel task, the robot maintains a short-term memory that helps
it reflect and learn how to complete the task (illustrated in the
grey clip). The experience is then stored as long-term memory
and retrieved to guide the VLM’s task planning whenever a
similar scenario is encountered (illustrated in the main figure).

challenging, as they are designed exclusively for text pro-
cessing, while robots must operate based on continuous, high-
dimensional sensor streams.

To address the limitations of text-only input, research has
increasingly shifted toward multimodal approaches, especially
vision-language models (VLMs) that jointly process visual
and textual data. Recent VLMs [10], [11], [12] exhibit strong
multimodal reasoning and high-resolution visual processing.
Building on these capabilities, recent work has leveraged
VLMs to enable robots to reason about visual inputs and
operate in closed-loop, autonomous settings [13], [14], [15],
[16].

Yet, transferring these internet-trained models to physical
robots remains challenging. While VLMs excel at abstract
reasoning and visual understanding, they are not inherently
aligned with the embodiment, skill sets, and limitations of real-
world robotic systems. For example, in Figure 1, a VLM may
confidently instruct a grasp on a partially occluded tennis ball,
consistent with human intuition, yet the robot may fail due to
limited manipulation capabilities under partial observability.
This raises a critical question: How can the robot align the
VLM with its own capabilities to achieve better task planning
performance?

This paper introduces PRAGMABOT, a framework that
enables robots to learn task planning through real-world ex-
perience. Our method is inspired by the principles of verbal
reinforcement learning [17], where the LLM improves its
performance via in-context learning on past self-reflective

1

experience, without incurring the expense of fine-tuning the
LLM through weight updates. PRAGMABOT utilizes a VLM
in three different ways: (i) to plan actions for execution, (ii)
to verify that the action was completed successfully, and (iii)
to summarize experiences. It maintains a short-term memory
(STM) that keeps track of executed actions and associated
feedback signals, along with a long-term memory (LTM) that
stores lessons learned from past successful task executions.
PRAGMABOT uses the STM to perform self-reflection, allow-
ing the robot to adapt its behavior toward achieving the task
goal. Upon successful task completion, the VLM summarizes
the STM experience and stores it in the LTM. When presented
with a similar task in the future, the robot employs retrieval-
augmented generation (RAG) to retrieve relevant knowledge
from the LTM for planning actions while accounting for its
own capabilities and limitations. Additionally, PRAGMABOT
enhances the spatial understanding of VLMs through an on-
demand image annotation module.

This paper presents the following key contributions:
• We introduce PRAGMABOT, which adapts verbal rein-

forcement learning to real-world robotic task planning by
integrating VLMs with visual feedback. We demonstrate
that the combination of short-term and long-term memory
enables efficient learning of task planning tailored to the
robot’s embodiment and capabilities.

• We introduce retrieval-augmented generation (RAG) into
the verbal reinforcement learning framework, allow-
ing the robot to selectively leverage task-relevant, self-
reflective experiences. Extensive evaluations show that
RAG improves planning accuracy significantly compared
to naive prompting.

• We design an on-demand image annotation module that
enhances the VLM’s spatial reasoning across diverse
skills. We demonstrate that this module leads to more
accurate action execution in complex, real-world envi-
ronments.

Extensive real-world experiments show that PRAGMABOT
significantly outperforms state-of-the-art methods in task suc-
cess rates and generalizes well to similar but previously unseen
tasks. To support future research, our code is available on the
project webpage1.

II. RELATED WORK

Recent advances in robotic task planning have explored
methods enabling robots to understand their own capabilities
and limitations. SayCan [6] grounds language understanding in
robotic affordances by combining LLM outputs with a trained
visual affordance network, which requires extensive training
resources. Alternative frameworks focus on building robotic
memory through dense human feedback and corrections to
improve decision-making [18], [19]. Building on this direc-
tion, BUMBLE [20] integrates short-term memory for online
replanning with long-term memory of human-annotated failure
cases to guide VLMs in avoiding past errors. However, these
methods typically rely heavily on dense human supervision
for feedback and correction.

1https://pragmabot.github.io/

TABLE I: Comparison with baselines. PRAGMABOT is
the only method that achieves self-reflection, learning by
experiencing, interactive replanning, and creative tool use
(highlighted in bold). System components are listed in regular
font (• indicates presence).

Self-r
eflection

Learning by exp.

Interactive replan

Creative tool use

Short-t
erm

memory

Long-term
memory

Unified visual feedback

CaP [5] ✗ ✗ ✗ ✗ ◦ ◦ ◦
SayCan [6] ✗ ✗ ✗ ✗ • ◦ ◦
Inner Mono. [8] ✗ ✗ ✗ ✗ • ◦ ◦
RoboTool [23] ✗ ✗ ✗ ✓ ◦ ◦ ◦
DROC [18] ✗ ✓ ✗ ✗ • • ◦
REFLECT [21] ✓ ✗ ✓ ✗ • ◦ ◦
COME [14] ✓ ✗ ✗ ✗ • ◦ •
ReplanVLM [15] ✓ ✗ ✓ ✗ • ◦ •
BUMBLE [20] ✓ ✗ ✓ ✗ • • ◦
PRAGMABOT ✓ ✓ ✓ ✓ • • •

More recent work explores autonomous failure recovery
through self-reflection mechanisms. Systems such as [21],
[22] enable LLM/VLM-powered robots to analyze their own
failures and adapt subsequent actions to accelerate task com-
pletion. Building on this idea, Reflexion [17] goes further by
not only allowing the LLM agent to reflect on its failures
but also storing these self-reflective experiences in long-term
memory to inform future behavior. This approach, known as
verbal reinforcement learning, improves agent performance
not by updating model weights, but by incorporating addi-
tional contextual information for reasoning. While Reflexion
eliminates the need for extensive training data, it has so far
been evaluated primarily in simulated environments that do
not account for real-world embodiment or the complexities of
physical interaction. Moreover, observations must be supplied
either as ground truth from the simulator or via external, hand-
engineered scene descriptors.

PRAGMABOT investigates how physical robots can visually
evaluate the outcomes of their actions in challenging tasks,
self-reflect on failures, and construct long-term memory to
guide future planning—all through real-world experience. It
enables the system to learn without relying on explicit human
annotation or dense human feedback. Additionally, we in-
corporate Retrieval-Augmented Generation (RAG) to retrieve
relevant past experiences from memory. While RAP [24]
proposes using RAG with a memory built from diverse ex-
periences for simulated LLM agents, it does not consider
self-reflection with VLMs. Table I compares PRAGMABOT
with prior LLM/VLM task planners. “Learning by experi-
encing” implies that the robot learns from failure, adapts,
and memorizes the solution for future planning (with or
without human correction). “Interactive replanning” refers to
interacting with non-target objects after failure to aid task
completion. “Creative tool use” involves autonomously using
unmentioned objects as tools. “Unified visual feedback” refers
to the robot using the same VLM for both planning and
verification, thereby aligning more closely with the concept
of self-reflection.

Beyond task planning, VLMs can also be used to determine

2

Scenario 0 Experience 0

RAG

VLM Task
Planner Task Execution

Scenario 1 Experience 1

Scenario 2 Experience 2

New Scenario New Experience

New Scenario

New Experience

VLM
Success

Detector

User Instruction

t = 0 : <summary 0>

t = 1 : <summary 1>

t = 2 : <summary 2>ST
M

LT
M

VLM Experience
Summarizer

Algorithm 1 PRAGMABOT

Given: Instruction I, initial observation o0

Internal: Long-term memory M

1: K′ ← (I,D(o0))
2: {(Ki,Ei)}k−1

i=0 ←
arg top k(K,E)∈M

[
E(K)T E(K′)

∥E(K)∥∥E(K′)∥

]
3: t← 0, m← ∅
4: repeat
5: at ← P

(
I,ot,m, {(Ki,Ei)}k−1

i=0

)
6: Execute at and receive ot+1

7: rt+1 ←R(ot,at,ot+1)
8: m←m ∪ (at, rt+1)
9: t← t+ 1

10: until rt.completed
11: M←M ∪ {(K′,S(m))}

Fig. 2: PRAGMABOT pipeline (illustration: left, algorithm: right). At the start of each task, the system takes the user
instruction I and egocentric observation o0, which the VLM combines into a scenario (key). RAG retrieves relevant experiences
from long-term memory M and, together with the instruction and observation, feeds them into the VLM task planner P to
generate the next action a. After execution, success is checked by the VLM success detector R. If the task is not completed,
the action a and its feedback r are accumulated into short-term memory m and fed back into planning. Once the task is
completed, the short-term memory m is summarized and stored in long-term memory M for future use.

precise action parameters through mask-based techniques [25],
[26]. Recent approaches combine object-centric annotations
with grasping tools to support challenging semantic manip-
ulation tasks [27], [28], [29]. However, these methods are
typically limited to planar tabletop settings or grasping-only
scenarios. In contrast, PRAGMABOT introduces an on-demand
image annotation tool that enables grounded actions in 3D
space, supporting a broader range of skills beyond 6-DoF
grasping.

III. PROBLEM FORMULATION

Consider a robot system equipped with K predefined pa-
rameterized skills {πk}Kk=1, where each πk is a low-level
policy mapping observations (e.g., camera inputs) to action-
able commands (e.g., joint motions), operating until certain
termination conditions are met. These skills are assumed to
be provided in advance, either learned through imitation or
reinforcement learning, or implemented as optimal controllers
such as model-predictive control.

We focus on task planning—specifically, how the robot can
effectively sequence these skills to accomplish a task described
by a human in natural language. To address this, we introduce
a higher-level skill selection policy Π, implemented using
foundation models such as VLMs. At each time step, the
selected skill is sampled according to

πk ∼ Πθ(I,ot, ct), (1)

where I denotes the natural language instruction, ot is the cur-
rent environmental observation (e.g., an image from the robot’s
camera), ct represents additional contextual information, and θ
denotes the parameters of the VLM. We aim to investigate how
to effectively adapt and improve the skill selection policy (1)
without requiring extensive training resources or dense human
supervision.

IV. METHOD

PRAGMABOT enables the robot to learn to plan tasks
through interaction with the real world, following a paradigm
akin to reinforcement learning. This is achieved through sev-
eral core components: a success detector, a memory mecha-
nism, and a memory retrieval strategy. Each component plays
a distinct role in the learning pipeline, as detailed below. An
overview of the full system is illustrated in Figure 2.

A. Task Planner

The task planner P leverages a VLM to interpret the user
instruction I and, conditioned on the current RGB observation
ot, outputs the next action at—which consists of a selected
skill πk along with its associated parameters. This behavior is
governed by an underlying policy Πθ, which samples actions
using the VLM’s visual-language understanding and common-
sense reasoning capabilities encoded in its parameters θ.
However, this initial policy is insufficient on its own—it
lacks awareness of the robot’s capabilities and limitations.
To bridge this gap, P must be improved through real-world
interaction, adapting its decisions to better align with the
robot’s embodiment.

B. Success Detector

The success detector R, also implemented as a VLM—the
same model used by P—provides a feedback signal r that
assesses the outcome of an executed action a by comparing
the observations before and after the action:

rt+1 ← R(ot,at,ot+1) (2)

The resulting feedback signal provides two binary indicators:
whether the action was successful and whether the overall task
is complete. Additionally, it includes a semantic description
of the scene changes induced by the action, which can be
leveraged by the task planner to determine subsequent actions.

3

C. Short-Term Memory and Online Adaptation

PRAGMABOT keeps a short-term memory (STM) module,
denoted m, which functions as a dynamic log that inter-
acts iteratively with P and R. It stores a sequence of past
interactions up to time t, where each entry consists of an
executed action aτ and the corresponding feedback signal
rτ+1 generated by R:

m = {(aτ , rτ+1)}t−1
τ=0. (3)

Upon action failure, P performs self-reflection, identifying
potential causes and propose better ways to complete the task.
This is part of the chain-of-thought before outputting the final
action [2]. This process echoes gradient computation in RL,
but instead of updating network weights, the planner uses
this “linguistic gradient”—expressed in natural language—to
improve its behavior. For example, if the robot fails to pick
up an apple partially occluded by a can, the linguistic gradient
might read: “Previous attempts to pick up the apple directly
have failed. The apple is next to a cylindrical container, which
might be causing interference. To create more space and ensure
a successful grasp, I will push the can to the right, away from
the apple. This should allow for a clearer path to pick up the
apple.” In addition, we observe that the robot is capable of
learning to use tools for manipulating small objects after an
initial action failure. This STM serves as a crucial component
for online adaptation, effectively substituting weight updates
with in-context learning guided by linguistic feedback.

D. Long-Term Memory and Experience Summarization

The STM is episodic and resets upon task completion, thus
it does not retain knowledge across tasks. To enable cumulative
learning and transfer of experience over time, we introduce
a persistent long-term memory (LTM), denoted M. Upon
successful task completion, the robot summarizes its STM
into LTM using a VLM-based experience summarizer S. This
summary is stored as a key-value pair (K,E), where the key
K is a scenario description and the value E = S(m) is the
corresponding summarized experience:

M←M ∪ {(K,E)}. (4)

The key K combines two components: (1) the user instruction
I and (2) a natural language description of the initial scene,
generated by a VLM scene describer D from the first RGB
observation o0 (e.g., “The apple is on the right side of the
table, next to a salt container. The plate is on the left side,
with ample space around it.”). This combined context provides
a rich, semantically meaningful index for future retrieval. To
enable fast and effective lookup, the key K is embedded into
a dense vector using a text embedding model E and cached in
the LTM. In this way, the LTM facilitates lifelong learning
by transforming transient episodic memories into reusable,
generalizable knowledge.

E. PragmaBot Algorithm

When presented with a new task, the task planner P lever-
ages past experience through a retrieval-augmented generation

Task Planner

Instruction: <Instruction>.

Robot's current
observation: .

Here is the action history:
<STM>.

List of planning rules and
constraints.

Here are the past
experiences: <LTM>.

Choose the next best
action.

Success Detector

Instruction: <Instruction>.

Action the robot just
attempted: <Action>.

Observation before the
action: .
Observation after the
action: .

List of success/failure
criteria and reasoning
rules.

Output your structured
evaluation.

Experience Summarizer
Instruction: <Instruction>.

Scene: <Initial scene
description>.

Summarize the robot’s
experiences: <STM>.

Scene Describer
Instruction: <Instruction>.

Robot's current
observation: .

Provide a short scene
description.

Fig. 3: Prompt templates used in different VLM modules.

(RAG) mechanism. A retrieval key K′ is constructed from the
current instruction I and the initial scene description. Using the
text-embedding model E , the system computes the embedding
of K′ and retrieves the top-k most similar past experiences
from the LTM M via cosine similarity:

{(Ki,Ei)}k−1
i=0 ← arg top k

(K,E)∈M

[
E(K)T E(K′)

∥E(K)∥ ∥E(K′)∥

]
. (5)

These retrieved experiences are incorporated into the planning
prompt, enabling P to leverage in-context learning by drawing
on prior knowledge to make more informed decisions in new
but related scenarios.

The STM, initialized as an empty set, is provided to the
robot for online adaptation. At each time step, the task planner
P (the high-level policy to be learned) generates an action
based on the current observation, the current STM, and the
retrieved LTM entries. After execution, the success detector
R evaluates the action outcome and provides a success or
failure signal as the feedback. Upon action failure, the planner
performs self-reflection and takes a step along the linguistic
gradient to select the next action. Upon task completion, the
STM is summarized and stored in LTM for future use.

This closed-loop process—combining retrieval from long-
term memory, in-context adaptation via short-term mem-
ory, and experience accumulation—forms the core of the
PRAGMABOT framework. It enables both rapid initialization
on new tasks and continuous improvement over time, support-
ing effective lifelong learning in real-world environments. The
complete algorithm is outlined in Algorithm 1. The prompt
templates for VLM modules are shown in Figure 3; full
examples are available on the project webpage.

F. Enhanced Skillset with Image Annotations

For the low-level skills, we focus on three manipulation
ones—pick, place, and push. Identifying a suitable location
for each action is non-trivial: purely geometric grasp planning
may seize an undesirable part (e.g., the meat on a skewer or
the ice-cream top rather than its cone), and effective placing or
pushing likewise demands semantic scene understanding. To
address these challenges, we introduce an on-demand image-
annotation tool that is shared across all skills. Given a user in-
struction I and the current RGB frame ot, VLM first selects the
skill to execute with its parameters (e.g., object name, whether

4

Pick up drumstick. Push grape to banana.

Fig. 4: Illustration of image annotation tools.

image annotation is needed). The robot then performs open-
vocabulary segmentation with Grounded SAM [30], which
integrates Grounding DINO [31] and SAM [32], producing an
initial object mask. If the VLM requests a second annotation
pass, our image overlays a set of candidate location masks on
the image, allowing the VLM to choose the most appropriate
location for the current action.

For placing, we apply farthest-point sampling (FPS) [33] on
the segmented mask to generate candidate placement locations,
whereas for pushing, we draw candidate goal masks that
denote the end points. In both cases, the VLM evaluates the
annotated options and selects the most suitable location, as
illustrated in Figure 4. For grasping, the segmented point cloud
is first passed to AnyGrasp [34], which returns a set of grasp
hypotheses accompanied by confidence scores sconf ∈ [0, 1].
Grasp poses that violate kinematic constraints are filtered
out through inverse-kinematics checks using Pinocchio [35],
yielding the feasible subset G. If the VLM determines that
image annotation is beneficial (typically not the case for
simple objects like an apple), our annotation tool similarly
performs FPS within the object mask to generate a collection
of numbered location masks for the VLM to select from.
The final grasp is selected by maximizing the product of two
scores:

g∗ = argmaxg∈G sconf (g) · sloc(g), (6)

where sloc(g) ∈ [0, 1] denotes the location score, computed
based on the normalized Euclidean distance between grasp g
and the chosen location.

V. RESULTS

A. Experiment Setup

In our experiments, we use a legged manipulator that
combines ANYmal [36], a quadrupedal robot, with a 6-
DoF arm. The arm is equipped with a Robotiq 2F-140
gripper for object manipulation and a ZED X Mini Stereo
Camera mounted on the elbow for perception. We em-
ploy gpt-4o [10] for the VLM model and use OpenAI’s
text-embedding-3-large [37] for the text embedding
model E . If the robot fails an action and alters the environment,
a human operator can choose to reset the scene, after which
the robot resumes execution.

B. Evaluation of Short-Term Memory and Self-Reflection

To evaluate the effectiveness of the STM and reflection
module at efficiently generating successful episodes, even after
initial failures, we designed four challenging object manipu-
lation tasks (top two rows in Figure 5a). For the baseline, we

TABLE II: Effect of STM on task success rates. Each task
is tested 5–10 times with two attempts allowed.

Task CaP-V PRAGMABOT

Put apple on plate (container obstructs) 43% 86%

Move tiny candy (sponge/towel nearby) 22% 67%

Move egg (open view) 40% 100%

Pick up bowl (apple inside) 33% 83%

use CaP-V, which enhances CaP [5] by incorporating visual
feedback. Note that CaP-V does not have STM and selects
the next action solely based on the current image and user
instruction, without the ability to reflect on failed actions.
Experimental results in Table II highlight the critical role of
STM and reflection in achieving successful task completion.
Without STM, the robot tends to repeat the same failures
without adapting, leading to poor task performance.

With STM, the robot can successfully reflect on its failures,
leading to emergent intelligent object interactions (including
tool use) and ultimately task success. For example, when
instructed to “put the apple on the plate,” and faced with a par-
tially obstructing container, the robot initially fails to grasp the
apple due to poor perception and obstruction. After detecting
the failure, the VLM decides to push away the container and
successfully retries the grasp (see Figure 1). When asked to
“collect the bowl,” where an apple is already inside, the robot
initially tries to lift the bowl directly. However, the apple falls
out during the action execution, and the robot reflects and
revises its plan: “I should first move the apple to the table
before picking up the bowl” (see Figure 5b). Similarly, when
told to “move the candy to the banana,” the robot fails to push
the candy with its gripper due to insufficient contact. Upon
reflection, the VLM autonomously chooses to use a sponge as
a tool to push more effectively (see Figure 5b). After cracking
an egg while grasping, the VLM similarly learns to push rather
than grasp fragile objects.

Note that these instances of autonomous intelligent adapta-
tion would not be possible without the high accuracy of the
VLM’s success detection. In object-picking tasks, we observe
a false negative rate of 6.67% (4/60) and a false positive rate
of 5% (3/60), with most false positives occurring when the
object remains on the table but appears visually enclosed in
the gripper.

C. Evaluation of Long-Term Memory and Generalization

Upon completing the task in Section V-B, the STM is
autonomously transferred to the LTM for future use. Together
with 96 limited instructional experiences from simpler tasks,
we build an LTM containing 100 entries. For the baseline, we
use COME [14], which does not have access to the LTM.
We keep this generated LTM frozen during evaluation for
a fair comparison. We first evaluate the effectiveness of the
LTM in the same four scenes with the same objects. As
shown in Table III, the robot successfully recalls the correct
action from the LTM with RAG, demonstrating improved
performance compared to COME. We further investigate its
ability to generalize to other similar scenarios. To do so,

5

(a) Illustration of all scenes.

Move the candy to the banana.

Push candy to banana.
Action failed. Let me reflect.

Pick up sponge.
Action succeeded.

Push candy to banana.

I am about to do the dishes,
Collect the bowl please.

Pick up plate.
Action succeeded. Place apple

on table. Pick up plate.
Task completed.
Saving to LTM.

Task completed.
Saving to LTM.

Move the screw to the toolbox.

Retrieving LTM.
Pick up towel.

Push screw to toolbox.
Task completed.
Saving to LTM.

Pick up the milk carton.

Retrieving LTM.
Pick up apple. Place apple on

table. Pick up milk carton.
Task completed.
Saving to LTM.

Action failed. Let me reflect.
Pick up apple.

(b) Examples of PRAGMABOT on different scenarios.

Fig. 5: Overview of all experimental scenes (a) and demonstration of PRAGMABOT’s performance across four
representative scenarios (b). In the first two examples (top and middle rows), the robot successfully completes the tasks
after self-reflection. These experiences are then summarized and stored in LTM, enabling the robot to generalize its learning
to similar future scenarios (bottom row).

TABLE III: Effect of LTM on single-trial task success rates.
Each task is tested 5–10 times.

Task COME [14] PRAGMABOT

Put apple on plate (container obstructs) 29% 100%
Move tiny candy (towel nearby) 11% 78%
Move egg (open view) 20% 100%
Pick up bowl (apple inside) 17% 83%
Put tennis ball in box (mug obstructs) 29% 71%
Put orange/ball on plate (fan blocks) 10% 80%
Move crumpled paper (brush nearby) 25% 63%
Move screw (towel nearby) 0% 86%
Move sushi (open view) 14% 71%
Move grape/cherry (open view) 20% 70%
Pick up box (apple on top) 43% 86%
Pick up towel (orange on top) 50% 75%

we modify the scene to create new but structurally similar
scenarios, as illustrated in Figure 5a (bottom four rows).
The results in Table III show that experience gained from
one task successfully transfers to related tasks under similar
conditions and significantly improves the task success rate.
For example, when asked to “Move the screw to the toolbox,”
the robot immediately decides to use a towel to push the
screw successfully. Similarly, when tasked with “Pick up the
milk carton,” it remembers to reposition the apple first before
retrieving the target item.

We analyzed the 19 first-failure cases out of 91 total trials,
as shown in Figure 6. Of these failures, 8 stem from action
execution issues—either poor grasp generation or inaccurate
depth estimates from the stereo camera. Another 7 failures

All Trials (91)

Success (72)

Failure (19)

RAG (4)
Retrieval Failed (4)

VLM (7)
Overrides Experience (5)

False Detection (1)
Wrong Mask Selection (1)

Execution (8)

Poor Grasp Generation (5)
Inaccurate Depth Value (3)

Fig. 6: Failure flow diagram illustrating the sources of
initial failure across two hierarchical levels.

arise from VLM reasoning errors, most notably when the
VLM perceives the retrieved memory as misaligned with the
current visual observation and consequently downweights or
ignores the relevant experience. For instance, in the “Put
tennis ball in the box (mug obstructs)” scenario, the retrieved
memory involved clearing a similar occlusion, but the VLM
might deem the mug’s obstruction negligible and overrode that
strategy, leading to failure. The remaining 4 failures occur
when the RAG fails to retrieve the relevant experience.

D. Ablation Study of Memory Retrieval

To evaluate the effectiveness of our memory retrieval strat-
egy, we measure the accuracy of the first planned action
(without execution) across 12 tasks under three retrieval set-
tings, as shown in Figure 7. We reuse the LTM described
in Section V-C. Randomly selecting k = 5 memories yields the
worst performance, with an average accuracy of only 17% on
unseen tasks, as task-relevant experiences are rarely retrieved

6

Put apple
Move candy

Move egg

Pick plate

Put ball

Put orange
Move paper

Move screw

Move sushi

Move grape

Pick carton

Pick towel

25
50
75

rag-4o
all-4o
rand-4o

Put apple
Move candy

Move egg

Pick plate

Put ball

Put orange
Move paper

Move screw

Move sushi

Move grape

Pick carton

Pick towel

25
50
75

rag-mini
all-mini
rand-mini

rag-4o
all-4

o
rand-4o

rag-mini
all-m

ini

rand-mini
0

2000

4000

6000

8000

To
ke

n
Co

un
t

Prompt Tokens (↓)

rag-4o
all-4

o
rand-4o

rag-mini
all-m

ini

rand-mini
0

2

4

6

8

10

Ti
m

e
[s

]

Response Time (↓)

Fig. 7: Ablation study of the memory retrieval module. The
radial axes of the radar charts represent the accuracy of the
first planned action in percentage. RAG with gpt-4o (rag-
4o) provides the highest accuracy.

by chance. Providing the entire LTM improves accuracy to
74%, but unfiltered retrieval introduces irrelevant or distracting
information, leading to unstable behavior. This aligns with
prior findings that excessively long or noisy contexts can
degrade model performance, as LLMs may struggle to focus
on the most relevant content [38], [39]. In contrast, our RAG-
based retrieval strategy achieves the highest accuracy at 89%.
We also evaluated PRAGMABOT using the smaller model
gpt-4o-mini. We found that this smaller model tends to
behave more conservatively, making it more aligned with our
robot when it does not have access to relevant experiences.
When provided with relevant memories, gpt-4o-mini also
shows clear performance gains, though the improvement is
less pronounced than for larger models. Consequently, both
rag-4o and all-4o outperform their mini counterparts, albeit at
the cost of higher latency. Moreover, feeding the full LTM
increases text prompt length by a factor of 7.5 (excluding
images), resulting in substantially higher monetary cost.

E. Ablation Study of Image Annotation Module

To evaluate the effectiveness of image annotation on grasp-
ing tasks, we compared success rates with and without it across
7 objects. A grasp was considered successful if it targeted the
correct object section (e.g., the stick of a meat skewer). As
shown in Figure 8, annotation significantly improves success
rates for objects with complex shapes that require grasping
specific sections (e.g., drumsticks, skewers). Without annota-
tion, AnyGrasp [34] often favors larger surfaces due to its
reliance on geometric cues. The failures with annotation are
mostly due to inaccurate 3D point clouds. We also evaluated
pushing by measuring the distance error to the target location
and found that image annotation consistently reduces this er-

box mug banana drumstick skewer ice cream brush
0

50

100

Su
cc

es
s r

at
e

[%
] Success rate for picking objects (↑)

w/ annotation
w/o annotation

egg →
sushi

sushi →
plate

cherry →
banana

grape →
banana

screw →
toolbox

candy →
banana

paper →
box

6

12

Di
st

an
ce

 e
rro

r [
cm

] Distance to target for pushing objects (↓)
w/ annotation
w/o annotation

Fig. 8: Ablation study of the image annotation module.
Top: success rates for picking objects (higher is better).
Bottom: distance errors in pushing one object to another (lower
is better). The results demonstrate that incorporating image
annotation consistently enhances performance.

ror, highlighting its benefits beyond grasping. While effective,
this method introduces additional latency, requiring an average
of 5.15 s to retrieve a response from gpt-4o.

VI. CONCLUSION AND FUTURE WORK

This work introduces PRAGMABOT, a novel method that
enables robots to learn to plan tasks by experiencing the
real world. Empirical results demonstrate that PRAGMABOT
allows robots to autonomously reflect and adapt using short-
term memory, significantly improving task success rates and
facilitating intelligent object interactions—such as creative
tool use. Furthermore, these experiences can be stored in
the long-term memory, enabling the robot to plan correctly
on its first attempt in the future, even in previously unseen
scenarios. Extensive evaluations show that integrating this per-
sistent memory with RAG yields substantial performance gains
over current state-of-the-art methods across 12 challenging
scenarios. Our framework provides a general and efficient
paradigm that does not rely on substantial training resources,
making it well-suited for deployment in real-world robotic
systems.

While PRAGMABOT demonstrates strong potential in learn-
ing task planning, it still presents several limitations. In
practice, certain real-world scenarios involve information that
cannot be captured by vision alone. Integrating additional
modalities–such as tactile or auditory signals–could greatly
improve the system’s capacity to interpret complex, multi-
modal feedback. Second, our current memory database is
limited by the cost of real-world data collection. Scaling to
much larger memory databases raises important questions:
should memory pruning be applied when the database becomes
extremely large? If so, which memories should be retained
and which forgotten? Could the VLM itself perform filter-
ing without relying heavily on human-designed heuristics?
Moreover, as the memory grows, our current top-k retrieval
mechanism may become ineffective, warranting exploration
of more sophisticated strategies—such as maximum marginal
relevance (MMR). Finally, sharing memories among multiple

7

robots is a promising direction. This is clearly feasible when
robots share identical hardware and skillsets, but what if they
have similar morphologies (e.g., another quadrupedal robot
with a single arm, but much smaller)? Could a robot initially
attempt to apply transferred memories and, upon failure,
discard unsuitable experiences and replace them with its own?
These are compelling directions for future work.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[2] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[3] J. Ahn, R. Verma, R. Lou, D. Liu, R. Zhang, and W. Yin, “Large lan-
guage models for mathematical reasoning: Progresses and challenges,”
arXiv preprint arXiv:2402.00157, 2024.

[4] Z. Fei, X. Shen, D. Zhu, F. Zhou, Z. Han, S. Zhang, K. Chen, Z. Shen,
and J. Ge, “Lawbench: Benchmarking legal knowledge of large language
models,” arXiv preprint arXiv:2309.16289, 2023.

[5] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for embodied
control,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 9493–9500.

[6] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i can,
not as i say: Grounding language in robotic affordances,” arXiv preprint
arXiv:2204.01691, 2022.

[7] C. E. Mower, Y. Wan, H. Yu, A. Grosnit, J. Gonzalez-Billandon,
M. Zimmer, J. Wang, X. Zhang, Y. Zhao, A. Zhai et al., “Ros-llm:
A ros framework for embodied ai with task feedback and structured
reasoning,” arXiv preprint arXiv:2406.19741, 2024.

[8] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue: Embod-
ied reasoning through planning with language models,” in Conference
on Robot Learning. PMLR, 2023, pp. 1769–1782.

[9] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” in Conference on Robot Learning. PMLR, 2023, pp. 540–562.

[10] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[11] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with gpt-4,” arXiv preprint
arXiv:2303.12712, 2023.

[12] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer,
D. Vincent, Z. Pan, S. Wang et al., “Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context,” arXiv preprint
arXiv:2403.05530, 2024.

[13] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choroman-
ski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-language-
action models transfer web knowledge to robotic control,” arXiv preprint
arXiv:2307.15818, 2023.

[14] P. Zhi, Z. Zhang, Y. Zhao, M. Han, Z. Zhang, Z. Li, Z. Jiao, B. Jia,
and S. Huang, “Closed-loop open-vocabulary mobile manipulation with
gpt-4v,” arXiv preprint arXiv:2404.10220, 2024.

[15] A. Mei, G.-N. Zhu, H. Zhang, and Z. Gan, “Replanvlm: Replanning
robotic tasks with visual language models,” IEEE Robotics and Automa-
tion Letters, 2024.

[16] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao, “Look before you leap:
Unveiling the power of gpt-4v in robotic vision-language planning,”
arXiv preprint arXiv:2311.17842, 2023.

[17] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Reflex-
ion: Language agents with verbal reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 36, pp. 8634–8652, 2023.

[18] L. Zha, Y. Cui, L.-H. Lin, M. Kwon, M. G. Arenas, A. Zeng, F. Xia, and
D. Sadigh, “Distilling and retrieving generalizable knowledge for robot
manipulation via language corrections,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
15 172–15 179.

[19] L. Bärmann, R. Kartmann, F. Peller-Konrad, J. Niehues, A. Waibel,
and T. Asfour, “Incremental learning of humanoid robot behavior from
natural interaction and large language models,” Frontiers in Robotics
and AI, vol. 11, p. 1455375, 2024.

[20] R. Shah, A. Yu, Y. Zhu, Y. Zhu, and R. Martı́n-Martı́n, “Bumble:
Unifying reasoning and acting with vision-language models for building-
wide mobile manipulation,” 2025.

[21] Z. Liu, A. Bahety, and S. Song, “Reflect: Summarizing robot experi-
ences for failure explanation and correction,” in Conference on Robot
Learning. PMLR, 2023, pp. 3468–3484.

[22] Z. Wang, B. Liang, V. Dhat, Z. Brumbaugh, N. Walker, R. Krishna,
and M. Cakmak, “I can tell what i am doing: Toward real-world natural
language grounding of robot experiences,” in 8th Annual Conference on
Robot Learning, 2024.

[23] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia,
J. Tan, and D. Zhao, “Creative robot tool use with large language
models,” arXiv preprint arXiv:2310.13065, 2023.

[24] T. Kagaya, T. J. Yuan, Y. Lou, J. Karlekar, S. Pranata, A. Kinose,
K. Oguri, F. Wick, and Y. You, “Rap: Retrieval-augmented planning
with contextual memory for multimodal llm agents,” in NeurIPS 2024
Workshop on Open-World Agents, 2024.

[25] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao, “Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v,” arXiv
preprint arXiv:2310.11441, 2023.

[26] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta, A. Xie,
D. Driess, A. Wahid, Z. Xu et al., “Pivot: Iterative visual prompting
elicits actionable knowledge for vlms,” in International Conference on
Machine Learning. PMLR, 2024, pp. 37 321–37 341.

[27] K. Fang, F. Liu, P. Abbeel, and S. Levine, “Moka: Open-world robotic
manipulation through mark-based visual prompting,” Robotics: Science
and Systems (RSS), 2024.

[28] G. Tziafas and H. Kasaei, “Towards open-world grasping with large
vision-language models,” in 8th Annual Conference on Robot Learning,
2024.

[29] Y. Qian, X. Zhu, O. Biza, S. Jiang, L. Zhao, H. Huang, Y. Qi,
and R. Platt, “Thinkgrasp: A vision-language system for strategic part
grasping in clutter,” arXiv preprint arXiv:2407.11298, 2024.

[30] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang,
Y. Chen, F. Yan et al., “Grounded sam: Assembling open-world models
for diverse visual tasks,” arXiv preprint arXiv:2401.14159, 2024.

[31] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, Q. Jiang, C. Li,
J. Yang, H. Su et al., “Grounding dino: Marrying dino with grounded
pre-training for open-set object detection,” in European Conference on
Computer Vision. Springer, 2024, pp. 38–55.

[32] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 4015–4026.

[33] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE transactions on image
processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[34] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie,
and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains,” IEEE Transactions on Robotics, vol. 39, no. 5,
pp. 3929–3945, 2023.

[35] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[36] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch et al., “Anymal-a
highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ in-
ternational conference on intelligent robots and systems (IROS). IEEE,
2016, pp. 38–44.

[37] OpenAI, “New embedding models and api updates,” 2024,
accessed: 2025-08-08. [Online]. Available: https://openai.com/index/
new-embedding-models-and-api-updates/

[38] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
Transactions of the Association for Computational Linguistics, vol. 12,
pp. 157–173, 2024.

[39] K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston, “Retrieval
augmentation reduces hallucination in conversation,” arXiv preprint
arXiv:2104.07567, 2021.

8

https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/

	Introduction
	Related Work
	Problem Formulation
	Method
	Task Planner
	Success Detector
	Short-Term Memory and Online Adaptation
	Long-Term Memory and Experience Summarization
	PragmaBot Algorithm
	Enhanced Skillset with Image Annotations

	Results
	Experiment Setup
	Evaluation of Short-Term Memory and Self-Reflection
	Evaluation of Long-Term Memory and Generalization
	Ablation Study of Memory Retrieval
	Ablation Study of Image Annotation Module

	Conclusion and Future Work
	References

